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ABSTRACT

Top of the line corrosion (TLC) is a specific type of corrosion
that occurs due to internal water condensation in wet gas lines.
It is a serious concern for the oil and gas industry and has
been the cause of numerous pipeline failures. Many research
projects have been executed with the aim of better under-
standing the mechanisms and developing accurate predictive
models of TLC. Irrespective of their complexity, most of the
models are based on laboratory experimental data. This makes
it important, even in the case of most advanced models, to
compare and validate a model’s predictions using field data.
Data collected from sweet wet gas lines that experienced
TLC issues were analyzed, processed, and then used as an
input for a mechanistic TLC predictive model to simulate
the evolution of temperature, pressure, water condensation
rates, and TLC rate along the pipeline. The simulation results
were then compared with in-line inspection (ILI) data.
Challenges were encountered in the analysis of the field data
due to their incompleteness, inaccuracy, and variability as well
as in the processing of the ILI data. A coherent methodology
for comparisonwithmodel prediction results was developed and
described.

KEY WORDS: field data, magnetic flux leakage data, modeling,
top of the line corrosion

INTRODUCTION

TLC is associated with numerous pipeline failures
and is a growing concern for the oil and gas industry.1-6

TLC is encountered under water condensing condi-
tions in wet gas pipelines operated in a stratified flow
regime at low gas velocity. Water, along with the light
hydrocarbons, condenses on the top and the sides of the
inner pipeline surface due to the temperature differ-
ence between the external and internal pipeline envir-
onments. Carbon dioxide (CO2), hydrogen sulfide
(H2S), and volatile organic acids make this condensed
water especially corrosive.7-8 TLC has been intensely
studied over the past decade with the aim of better
understanding the underlying corrosion mechanism
in order to develop accurate prediction models and
successful mitigation techniques.9-15 Different cor-
rosion prediction models have been proposed with
varying degrees of complexity and sophistication. In
all cases, there is a wide gap between development of
corrosion models in academic and research institu-
tions and their application in the field. In order to bridge
this gap, model performance must be validated with
actual pipeline TLC failures in the field.

In 2010, Gunaltun, et al., presented a first at-
tempt to compare TLC prediction model results with
field data measurements.16 In theory, a top of the line
environment constitutes a prime candidate for com-
paring field measurement and model predictions, as
the chemistry of condensed water is relatively simple
and is not altered by the complex brine composition
encountered in the bulk liquid phase. However, a purely
mathematical/statistical approach cannot be used
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uncritically to process large volumes of field data
because this tends to lead to the inclusion of poor
quality data into the analysis. TLC defects, at least in
sweet environments, have been reported to bemade of
many large “mesa attack type” features, which are
governed by uniform corrosion mechanisms.17

However, in-line inspection (ILI) data often represent
defects in the form of small pits. Gunaltun’s attempt
to compare field data and model predictions16

highlighted numerous challenges involved with the
interpretation of the ILI data and model predictions.

The present study proposes a new methodology
aimed at developing a more representative set of input
parameters (based on production data) and output
parameters (based on ILI data), the main objective
being to identify gaps in the modeling approach. The
mechanistic TLC model TOPCORP™ (referred to as the
“model” in the following text), developed by the
Institute of Corrosion and Multiphase Technology at
Ohio University, is used. Its capabilities are validated
against subsea line data from an offshore gas field in the
Gulf of Thailand that has been in operation since
1992. Additional details can be found in the author
thesis.18

A TOP OF THE LINE PREDICTION MODEL

The theory and implementation behind the TLC
model used in the current study was developed originally
by Zhang, et al.12 This model provides a fully mech-
anistic description of the TLC process. The three major
phenomena covered by this model are as follows:

Dropwise condensation, used for condensation
rate calculation based on heat and mass transfer
theory.

Chemistry of the condensed water, developed
from thermodynamic arguments by using
chemical equilibria.

Corrosion, where the TLC rate was predicted
based on the kinetics of the electrochemical
reactions.

The model was adapted to run line simulations
where, in order to obtain predictions along a pipeline,
only pipeline inlet parameters and pipeline physical
characteristics are required, as listed in Table 1. Among

the pipe characteristics listed, the type and thickness of
insulation layers and the burial ratio and depth can have
a significant influence on the condensation rate and the
temperature drop along the line. For example, ensuring
100% pipe burial is a very effective way tomitigate TLC.
The main output parameters are listed in Table 2.

The effect of many important factors on TLC,
such as gas temperature, CO2 partial pressure, gas
velocity, condensation rate, and acetic acid concen-
tration, were accounted for in the model.12

However, the effect of oil/water co-condensation
was not taken into account, because the research on
this topic was still ongoing at the time this study was
performed. Since then, recent experimental work19 has
shown that the condensation of light hydrocarbons
does not seem to prevent liquid water from reaching the
hydrophilic steel surface. It should be noted that the
experimental work was performed with only one
hydrocarbon (heptane) and that the conclusions may
differ if other, heavier hydrocarbons are considered.
However, the mere fact that so many wet gas lines
suffer extensively from TLC is a good indication that one
should not rely solely on the co-condensation of
hydrocarbons for corrosion mitigation.

A METHODOLOGY FOR COMPARING MODEL
PREDICTIONS WITH FIELD DATA

There are many challenges that need to be
overcome when directly comparing ILI data and model
predictions. They can be classified into three main
groups as follows:

Issues Related to the Accuracy of Field Data
Availability, completeness, and accuracy of pro-
duction data.

Significant variations in production data
over time.

Availability and accuracy of topographic data,
environmental conditions, and pipeline
properties.

The mechanistic model used in this study is only
sensitive to a set of basic input parameters such as
production rates, temperature, pressure, etc. These
input parameters can vary tremendously over the
course of a field’s production life. The level of un-
certainty and inaccuracy related to these data can be
significant and represents themost difficult challenge
in the analysis. For example, decades of production

TABLE 1
List of Input Parameters to the Model

Parameter Name

Inlet temperature and total pressure
CO2, H2S gas content
Brine composition (especially bulk water pH and organic
acid content)

Gas, water and oil/condensate flow rate in standard conditions
Pipeline diameter, roughness, section length, inclination
Thermal insulation (coating concrete : : : )
Burial ratio and depth

TABLE 2
List of Model’s Output Parameters

Parameter Name

pH and chemistry of the condensed water along the line
Water condensation rate along the line
Steady state uniform top of the line corrosion rate along the line
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history should not be averaged to get one single set of
input data (i.e., one average pressure, one average
temperature, one average gas flow rate, etc.). In ad-
dition, the topography (pipeline inclination), bathymetry
(pipeline burial), and information about the outside
environment (on/offshore, outside temperature)
are essential for calculation of the condensation rate
and TLC corrosion evaluation. Finally, any additional
changes affecting the operating conditions, such as
injection of corrosion or scaling inhibitors, commingling
of flow streams, or production shut-downs, must also
be taken into account.

Issues Related to the Model Predictions
Which model prediction data should be com-
pared with the ILI data?

How should variations in production data over
time be incorporated into the prediction?

How should the change in conditions and TLC
rate along the pipeline be reflected in the model?

Even though the model has been developed to
predict transient corrosion, it suggests that a uniform
steady-state TLC rate is typically obtained in a matter
of weeks or months.20 While production parameters vary
continuously, these variations are also only significant
on a monthly basis. It is therefore more appropriate that
the model’s steady state corrosion rates be compared
to the wall thickness (WT) loss data obtained from ILI
inspections, as long as the main corrosionmechanism
is uniform (large mesa type features) and not pitting
(small pits influenced by galvanic coupling). Produc-
tion data are often taken on a daily basis, but it is not
practical to simulate every single production data
entry. In order to address this issue, longer time periods
showing similarities in terms of input production
parameters can be selected, and time-averaged input
parameters can be defined for each time period and
then fed into the model. Consequently, a thorough
analysis of the production data needs to be conducted,
leading to the identification of these time periods.
Changes in operational parameters over time can then
be accounted for, provided that a thoughtful identifica-
tion of the time periods has been performed.

Issues Related to the Analysis of In-Line
Inspection Data

How to take into account the inherent inaccuracy
of TLC feature sizing;

Whether the size or spatial distribution of the
TLC features should be considered in addition to
the maximum depth of attack;

How to determine the best approach to compare
model predictions with complex ILI data.

Magnetic flux leakage (MFL) testing is probably
the most widely-used nondestructive testing tool (NDT)
for inspecting pipeline structures in the oil and gas
industry.21-23 It is crucial to point out that MFL does not

directly measure WT loss. Rather, deviations in the
magnetic fluxes are translated into defect sizing by
proprietary algorithms. These algorithms vary across
different tools from vendor to vendor and are continu-
ously updated and calibrated. The performance of
MFL data is strongly affected by velocity of the tool,
magnetization values, and presence of pipe joints. As
a result, not all ILI data are of the same accuracy/
quality, although a typical accuracy on the order of
10% to 20% of the nominal WT with 80% confidence is
often claimed.24-25 Typically, MFL data are presented
in terms of a list of defects along the pipeline. ILI
tools report defects in clockwise location on the pipe,
enabling the identification of TLC-specific features
between the 10 o’clock and 2 o’clock positions. Each
defect is associated with a specific circumferential
location and a corresponding WT loss. Additional
information relating to the merger of small defects
into clusters may also be available. The presence of
clusters is typical of a TLC attack (at least in sweet
environments) and this is where most of the wall loss
occurs.1-4 Consequently, it is important to be cautious
when analyzing ILI data and to consider only the most
accurate and representative data before comparing
themwithmodel simulations. An effort was developed
in this sense to improve the accuracy of the MFL
measurements for TLC applications.26 Although ILI
measurements carry some degree of uncertainty, data
interpretation is by far the most critical step in the
analysis. For example, a comparison between two
consecutive ILI runs should be made only if the
inspection and analysis are performed using the same
tool and the same mathematical algorithm for anal-
ysis.27 If not, this exercise cannot be expected to
produce meaningful data for validation of prediction
models.

Methodology for Comparing Model Predictions
and Field Data

The following procedure was implemented to
compare model predictions with a specific set
of field data, which is described later in this paper.
However, this general approach is believed to be valid
regardless the selected model or the field data of
interest.

Field Condition Analysis — The following procedure
is implemented in the current approach:

Step 1: The evolution of the operating parameters
(inlet temperature and pressure, gas/liquid flow rates)
for a selected line from start-up to present is divided
into a number of time periods where these parameters
have relatively stable values. For each of these time
periods, a simple, time-averaged value is calculated for
each operating parameter.

Step 2: The values determined for the main
operating parameters (inlet temperature, pres-
sure, and production flow rates) are used to
calculate water condensation rates (WCR) and
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temperature profiles using a heat and mass transfer
line model.12

Step 3: Simulations are made to obtain TLC rate
predictions for a number of selected points along
the pipeline. The simulation at each point is executed
until a steady state corrosion rate is obtained
(i.e., no significant variation of the corrosion rate
with time).

Step 4: WT losses are calculated for each time
period by multiplying the average corrosion rate by the
duration of the corresponding time period, assuming
uniform corrosion. Cumulative WT loss is then calcu-
lated for the entire operating life of the field (or for any
relevant duration) and compared with provided
MFL data.

In-Line Inspection Data Analysis — The following
procedure is implemented in the current approach:

Step 1: Only the first few kilometers of a pipeline
were considered in this study, because it is the section
where the most severe TLC is typically encountered,
as a result of the effect of the temperature drop along
the line.

Step 2: Corrosion features in the vertical riser
were not included in the analysis because they cannot
be categorized as TLC.

Step 3: Only features in the upper section of the
pipe (between 9 o’clock and 3 o’clock) were analyzed,
because this is where TLC features are typically
observed.

Step 4: ILI data obtained for features close to weld
joints are notoriously noisy and thus unrepresentative.
Joints were present every 12 m along the line and
therefore the features located ±0.5 m around the weld
joints were eliminated from the analysis. Although it
is common for the degree of attack to bemore significant
near weldments, this phenomenon is not TLC-specific
and is not predicted by the model. It is therefore filtered
out of the analysis.

Step 5: Another feature of the model is that it
predicts uniform corrosion (as opposed to localized
attack driven by galvanic coupling) and is therefore
more representative of severe corrosion happening in
the clusters than in the small pits. This is not a major
limitation, as the mechanism of TLC is believed to
be controlled by the chemistry of the condensed
water rather than by any galvanic coupling involving
corrosion products.17 Small-sized, isolated features
are therefore filtered out, while large clusters are kept
for the analysis. Clusters are defined as large corro-
sion features (where width and length are at least 3
times the un-corroded WT), following the classifica-
tions developed by the Pipeline Operators Forum
(POF).28 The outline of this procedure is presented in
Figure 1.

Step 6: As the model has been developed to
predict the most severe TLC rate, the set of data points
along the line representing the maximum WT loss
was retained for comparison with the simulations.

This set is referred to as the “maximum penetration
envelope.”

COMPARISON OF MODEL PREDICTIONS WITH
FIELD DATA

Part I: Detailed Analysis of Line A
Field Conditions — Field A was an offshore gas field

in the Gulf of Thailand that had been in operation
since 1992. Subsea lines in this field have been sub-
jected to TLC, since production start-up, due to a
highly corrosive environment. The produced gas con-
tained 23 mol.% of CO2 on average. The fluid tem-
perature at the inlet of the flowline was typically higher
than 80°C. With the low external environmental
temperature (26°C on average), the temperature dif-
ference between the internal and external pipeline
environment was quite high, leading to high conden-
sation rate and consequently severe TLC. The field
was also suspected to produce some volatile organic
acid, but no water analysis was available at the time
the study was performed.

The general characteristics of Line A are pre-
sented in Table 3. Changes in soil burial depth and
seabed levels along the line are taken into account.

Field operating condition 
analysis

Selection of time periods 
with similar operating 

conditions

TLC model

Prediction of water condensation 
rates and TLC rates for each time 

period

Determination of cumulative wall 
thickness loss for entire production life

Analysis of ILI data
- Selection of TLC 

relevant information
- Filtering of “noisy” data 

(field joints …)

Perform a meaningful comparison 
between TLC model prediction and 

actual field measurements

FIGURE 1. Algorithm of the selected procedure for comparison
of model predictions with the TLC field data. ILI, in-line inspection;
TLC, top of the line corrosion.

TABLE 3
Line A Characteristics

Pipeline Characteristic Line A

Pipe length (km) 7.1
Internal diameter (m) 0.34
Pipe wall thickness (mm) 15.9
Insulation type 3LPP(A)

Insulation Conductivity (W/mK) 0.22
Insulation Thickness (mm) 2
Outside (sea water) temperature (°C) 26

(A) Three-layer polypropylene coating.
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The fluctuations in pipeline inclination also affect pre-
dicted flow regimes. However, the flowline was fairly
horizontal as the maximum elevation span was 3m over
the entire 2 km of line.

The chemical composition of the brine is shown
in Table 4. A large concentration of acetate species
was present in the brine (845 mg/L). However, due to
the relatively high pH (6.2), only 52 mg/L of undisso-
ciated acetic acid should have remained in the brine.
According to a vapor liquid equilibriummodel developed
in-house,7 only 30 mg/L to 40mg/L of acetic acid will
be present in the condensed water at the top of the
line. This information was not known at the time the
simulation work was performed, therefore, it does not
consider any amount of acetic acid. This is not be-
lieved to have a significant effect on the corrosion pre-
diction considering such a low concentration.

Chemical inhibition was used as the primary
corrosion mitigation technique. Continuous injection
and monthly batch treatment was implemented. In
addition, a maintenance pig was operated before each
batch treatment. For the corrosion simulations per-
formed in this study, the effect of inhibition at the TLC is
assumed to be nil.

Figure 2 shows the production variation for Line
A from the start-up year (1998) to the inspection year
(2005). The production data were analyzed consid-
ering the three main parameters that are believed to
affect TLC: gas flow rate, inlet temperature, and inlet
pressure. Three time periods of similar values were
selected, although it is acknowledged that some ad-
ditional fluctuations in the operating parameters still
appear. The selection of each of these time periods is
at the discretion of the user, who has to balance data
representativeness with calculation practicality. The
average values for each time period were calculated and
are presented in Figure 3. They were used as inputs
for the TLC model.

In-line inspection Analysis — The raw MFL data
reported many defects mostly located in the first
1.5 km, as illustrated in Figure 4(a). Following the
procedure described above, representative ILI data
were obtained by filtering the raw data. Only features
located at the 10 o’clock to 2 o’clock position were
retained, and any defect located at ±1 m of a pipe joint
was automatically discarded. In addition, uniformly
corroded clusters were identified following the classifi-
cations developed by the POF.28 Those features are
believed to be the most representative of a TLC attack
and are thought to be comparable to the model

prediction’s output (Figure 4[b]). The maximum
measured WT loss was also captured by drawing a
maximumpenetration envelope, as shown in Figure 4(b)
(an arbitrary continuous line passing through the
maximum WT loss points). The uniform TLC features
identified as clusters coincide with the maximum
penetration envelope.

Simulation Results — Figure 5 shows the predicted
WCR and temperature profile along the line. While the
inlet temperature was taken directly from production
history, the profile of temperature along the line was
calculated using the heat transfer module in the model.

TABLE 4
Brine Chemical Composition

Brine composition (mg/L)

K+ Na+ Ca2+ Mg2+ Ba2+ Sr2+ Fe2+ Cl− CO2−
3 HCO−

3 SO2−
4 Total acetate Acetic acid(A) pH(A)

40 1958 13.4 1.6 1.4 0.4 9.8 968.1 2.4 2813.3 1.0 845 52 6.1

(A) Calculated values.
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The analysis was broken down into three time periods
(period #1, period#2, and period #3) wherein it
was found that the operating parameters were rea-
sonably stable, and, therefore, time averages could be
used. The majority of the flow regimes predicted by
the model12 for Line A were stratified, indicating a TLC
possibility.

For the first time period, high values of WCR were
calculated at the beginning of the pipeline as a result of
the higher temperature gradient between the inside
and outside of the pipe wall. The predicted WCR values
were naturally lower when the pipeline was buried
and decreased along the pipeline because of the
reduction of internal fluid temperature.

For the second time period, the values of WCR
were higher than for the first time period at the same
locations; however, on many other locations the
increase in gas velocity led to a change in flow regime
prediction to nonstratified, thus eliminating the risk
from TLC. This change in flow regime only affected some
sections, not the entire line.

For the third time period, the predicted WCR is
clearly lower than for the first two time periods, mostly
because of the lower fluid temperature and lower heat
exchange between the pipeline fluids and the
environment.

In summary, the inlet temperature appeared to
be the main parameter affecting WCR in this case. It is
therefore crucial to obtain accurate inlet temperature
data in order to maximize the accuracy of the
predictions.

Figure 6 shows the predicted TLC rate. High
severity of TLC was predicted for the second time period
on sections of pipe experiencing stratified flow. This
time period experienced the most severe combination of
high inlet temperature and high inlet pressure. These
parameters all contributed to making the environment
very corrosive. Cumulative WT loss data are pre-
sented in Figure 7 and indicate a high overall risk for

TLC in this pipeline. These cumulative values are
back-calculated from the predicted corrosion rates and
durations obtained for each period.

Comparison between the Model Prediction and
Field Data— In Figure 8, the analyzed ILI data (including
error bars equivalent to ±10% WT stemming from
instrument accuracy), are compared with the cumula-
tive WT loss predicted by the TLC model. Overall, the
predicted TLC is in good agreement with the maximum
WT loss ILI data (i.e., the maximum penetration en-
velope). It is worth stressing that these model predic-
tions do not consider chemical inhibition while
the line itself was batch treated on a monthly basis.
The reasonable agreement of the predictions and the
ILI measurements is most likely an indication of a fairly
ineffective TLC mitigation method, as the model has
been successfully validated for a number of other
uninhibited environments.12

Over-prediction is noted at the beginning of the
line (first 200 m), but the remainder of the predicted
results follows the trend outlined by the maximum
penetration envelope and is within themargin of error of
the ILI measurements. The discrepancy encountered
at the beginning of the line is a recurrent feature of
comparison between the model and field data. The
current understanding of the mechanisms indicates
that TLC should be more severe when the fluid
temperature and the condensation rate are higher. This
is the case at the beginning of the line. The reason the
TLC rate does not exactly follow that trend in the first
few hundred meters of line is not entirely clear. This
discrepancy represents a gap in the understanding of
the TLC mechanisms and influential factors, as it
appears quite consistently, and the model is only a
faithful reflection of the current understanding. Al-
though no definitive answer can be given at this stage,
the effect of co-condensation of hydrocarbons, which
should be quite important at the beginning of the line,
could influence the TLC rates. This is despite recent

0
0

2

4

6

8

10

12

14

16

18(a) (b)

500 1,000
Distance (m)

W
al

l L
o

ss
 (

m
m

)

0

2

4

6

8

10

12

14

16

18

W
al

l L
o

ss
 (

m
m

)

2,000

ILI data 2005 ILI data 2005

The maximum penetration envelope

Corrosion allowance (10 mm) Corrosion allowance (10 mm)

Nominal wall thickness (15.9 mm) Nominal wall thickness (15.9 mm)

2,5001,500 0 500 1,000
Distance (m)

2,000 2,5001,500

FIGURE 4. ILI data filtering for Line A: (a) all ILI corrosion features, (b) a subset showing only TLC clusters (uniform corrosion
data) along with the maximum penetration envelope. (non-TLC features and noisy measurements close to pipe joints are
filtered out).

1012 CORROSION—AUGUST 2017

SCIENTIFIC INVESTIGATION OF FIELD CORROSION EVENTS



experimental data that seem to suggest otherwise.19

Partial transport of inhibitor through droplets that
are atomized in the highly turbulent section of pipe
following the dogleg could play a role as well.

Part II: Analysis of Other Lines
In order to determine the validity of the newly-

developed methodology and the accuracy of the
TLC model, a similar analysis was done for another
seven lines for which complete data sets were available.
A summary of that work is presented in Figure 9. In all
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cases, the maximum penetration envelope for the ILI
data agrees well with the clustered data (representing
uniform TLC), suggesting that the mode of corrosion
was not the typical pitting mode but rather repre-
sentative of a situation where fairly large local spots on
the metal surface are suffering from uniform corro-
sion. The performance of the TLC model can be con-
sidered reasonable for Lines B, D, E, and F. Those
predictions agree well with the maximum penetration
envelope, with the exception of the first few hundred
meters of line where TLC rates are over-predicted. This
discrepancy relates to the same gap in understanding

highlighted in the previous section, which is important
because the first sections of the line are commonly a
major concern in terms of TLC. For Lines C and G, the
model slightly under-predicts the rate of TLC attack
along the entire line. However, when error bars are
taken into account, this difference does not seem to
be statistically significant. This is summarized in
Figure 10, where a parity plot is shown for all seven
lines that were analyzed. Each line was divided into
300 m sections, and the maximum WT loss ILI data
for each section was used here and compared with the
prediction for the same locations in the line. The first
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500 m of each line were not considered in the analysis,
as a known discrepancy exists here. A reasonable
agreement was obtained in six of the seven cases, for
which the results were mostly within the margins
of measurement error. Only Line G showed consistent
under-prediction of the ILI data as the error was more
than ±10%.

DISCUSSION

The purpose of this paper was in part to validate a
mechanistic TLC model, but even more to propose
a procedure that takes into account the intricacy of
field data for an effective comparison with model pre-
dictions. In this sense, the steps proposed for per-
forming a thorough analysis of the operating conditions
and ILI results constitute a clear improvement com-
pared to what has been done in the past.16

It is crucial to ensure that the input parameters
“fed” to any model are, as much as possible,
an accurate representation of the changing con-
ditions (temperature, pressure, flow rate)
encountered in the field.

ILI data should also be thoroughly analyzed in
order to extract relevant data that the model was
designed to predict.

Overall, in this exercise, the mechanistic TLC
model predictions show a reasonably good agreement
with the ILI data. However, the comparisons are ob-
viously not “spot-on”, nor should they be expected to be.
The procedure cannot fully account for all of the
inherent complexities of field measurement or account
for any lack of understanding in the modeling ap-
proach. As the TLC prediction model used in this study
is mechanistic, it is only a reflection of the current
knowledge and cannot predict phenomena which are
not yet understood. A clear gap between model pre-
diction and ILI results exists in the first few hundred
meters of line. The model predicts the highest TLC
rates at the inlet of the line (as a result of high tem-
perature and WCR), while the ILI data consistently

show a maximum in TLC rates a few hundred meters
from the inlet. The reason for this specific behavior
of the TLC rate at the inlet of the pipe is unknown and
should be subject to further investigation in order
to verify whether this represents a TLC-specific mech-
anism or something else (co-condensation, inhibited
droplet deposition, protectiveness of corrosion product
layer, etc.).

In any case, results of model simulation, when
carefully used in conjunction with field experience,
significantly improve our ability to understand
the main causes of corrosion and implement suitable
methods to mitigate them in the future. In the case
of the mechanistic TLC model used in the study, the
results show that it can be used to evaluate the risk
levels for TLC in various pipelines and to prioritize TLC
mitigation programs and pipeline corrosion inspection
strategies.

CONCLUSIONS

v An effective methodology was developed to analyze
and validate the field data prior to any comparison with
model predication.
v This included the processing of key operating
parameters (inlet temperature, pressure, flow rate),
which are known to vary over time, as well as line
topography and ILI data, which are inherently
complicated and not always reliable. These steps are
considered to be crucial for enabling an effective com-
parison with model predictions.
v Themechanistic TLC predictionmodel used in this
study showed a reasonable agreement with the ILI data
for most of the lines analyzed, and predicted results
within the margins of ILI measurement error.
v Faults in model performance caused by gaps in the
current understanding were nevertheless identified,
especially pertaining to the first few hundred meters
of line, where the difference between predictions and ILI
data was the greatest.
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